CALCULATION OF THE MOTION OF
TWO-COMPONENT MEDIA

Yu., P, Zuikov and B. G. Kuznetsov UDC 532,584

The one-dimensional motion of a viscous incompressible liquid in which particles are sus-
pended is described by the mathematical model used in [1], Two examples are discussed:
the precipitation of particles from the suspension, and a boiling layer. The results are
presented in the form of graphs.

1, Most of the results of investigations of the motion of two-component media are given in monographs
[2-4], Gol'dshtik [5] gives a qualitative analysis of the phenomena in a boiling layer and presents certain
characteristic relations between the pressure and the particle density in the layer,

We consider the flow of a mixture of a viscous incompressible liquid and incompressible spherical
particles of constant radius in a domain Qs {0=< x =< I} in the time intervalt e [0, T]. The acceleration
due to gravity g is in the direction of the X axis, The equations describing the nonstationary one-dimen-
sional motion of a two-component medium are [1]
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The subscripts 0 and 1 refer to the liquid and the particles respectively. We denote by p and v the
pressure and the average mass velocity of the mixture; vj, @, and p; are respectively the velocities of the
components, their specific volumes, and densities; the mj are the true densities of the materials of the
components; pg and Ay are the viscosity and diffusion coefficients of the liquid; r is the radius of the par-
ticles; L is the length of domain Q; T is the characteristic time of the process, The shape factor ® = 4.5
for spherical particles; o;* is the particle density for maximum close packing. For a tetrahedral arrange-
ment of spherical particles a gcometrical construction gives

For r = 0,1 mm,a,* = 0,7,

The problem is to determine the functions p, v, vj, @y, and p; which satisfy Egs. (1.1) inthe domain
Qq =Q x [0, T] and the boundary conditions
(0, 2) = UL @), 1,(0, 1) = U (@), oy (0, 2) = 0p° ()
b0 (L.2)
valt,0) = ¢°(t), v (t,0) =0 ]

olt. LY =¢'(t), v (¢, L)=0", t=10,Tj
p(t,0) = P, = consl , (1.3)
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0ttt ¢ The functions ¢° and ¢! must satisfy the condition
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Tl — e — -~ brmm == We illustrate the main features of this problem by the ex-
' 7 Qs ample of the precipitation of the suspended particles,

¢
| 2. The precipitation of particles from a suspension typically

develops in the following way (Fig, 1), At time t,° a zone of pure
liquid Q, appears in the upper part of domain Qp; at time t;° a
zone of dense precipitate Q; appears at the bottom of Q. Between
them there is a zone Q, containing suspended particles. The zones are separated by the boundaries T'y,

and T'y3. In the limit as t —~ T the boundaries Ty, and I'y; approach the straight line x = x° asymptotically,
This state corresponds to the complete precipitation of the suspended particles,

Fig. 1

For the problem of the precipitation of particles,conditions (1.2) and (1.3) are written in the form

1500, 2) =0, 0, 2)=0, o (0; H=a,"(x)y, t-=0, z=0
v, 0)=0, 1v,(t,0)=0
volt, LY =0, (¢, L)=0, p(, 0)=~P, ]

(2.1)
, t=10,T] (2.2)

A different set of equations holds in each zone, In zone Q, the equations of a single-phase viscous
liquid apply, and these together with (2.1) and (2.2) give

a (t, 1) =0, ap(t, 2)=1

()=
Bo(t, 7) = 0. p(t,m=P¢+mogx} SRAS (2.3)

In zone Q, system (1.1) must be solved; in Qg
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In zone Q; the particles are in contact with one another and the pressure between particles is trans-
mitted directly through the liquid. As a result the pressure p in the mixture is different from the pres-
sure p, in the liquid,

Equations (2.3), (1.1), and (2.4) form a closed system.,

3. The laws of conservation of mass and momentum of the liquid and particles must hold on the bound-

aries I'y, and I'y;. These requirements determine the conditions the unknown functions must satisfy on
these boundaries,

Let us consider a volume bounded by the points x_(t) and x4(t) moving so as to include the same set
of liquid particles, Here x. € @, and x; € Q,. Let x, € T'yy, X_ < X4 < X4. Then

i d
%’1 =0, % ror (8 2.), Za =l (2, z,)

at at (3.1)

where vy, and vy, are the velocities of the liquid and particles at the boundary T'y, on the Q, side, Con-
servationof mass of the liquid is described by the equation

4 S
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X X

Hence
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or using (3.1) we obtain
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@guOps + Apa¥ye = 0 (3.2)

In deriving (3.2) it was assumed that p, is a continuous function of x in zone Q, and the interval (x4,
X +) is small,

Similar arguments for the particles and the mixture show that conservation of mass on I'y, leads to
the same condition (3.2).

Conservation of momentum of the liquid must be satisfied on I'y,, Let (x_, xx} and (Xx, ;) be two
volumes moving with the velocity of the particles on the boundary [yy; X4 € Tj;. As x_ — X, the law of
conservation of momentum of the liquid in the first volume can be written inthe form

v\ ’ v,
g (—p_ + 21 a—v;‘) — Po-Vy- (Voo — V1) = G- { —D,+ 2!‘0%} — PorVos (Vor — V14)

The right-hand side of this equation contains the total momentum entering the first volume from the
Q, side, and the square brackets contain the expression for the stress tensor of the mixture. Taking ac-
count of the fact that

- =1, v /dx =0, 0v./0z=10, v-=0
we obtain

~po = — p, + 2p090,/0x — po.vs (V0: — V1) (3.3)

The same arguments for the second volume give

. v, Pos¥ps
—p_ = — - 2 == 22y, — Uy,), . >0
Dot Aoy = 5 Boe =) G > (3.4)

In deriving (3,3) and (3.4) all body forccs were assumed regular in the neighborhood of x,.
Using (3.3), (3.4) and the law of conservation of momentum of the particles leads to the following rela:

tions on the line T'yy:

vo-= 9.= 0, ao.= agi==1, p,= p_+ 2uedv,/dz

(3.5)
At point x4 the conditions

oy, (8 o) = 0, day, (8, x,)/02 >0 (3.6)

must be satisfied.

The functions «, and v, must be continuous across the boundary I'y,, but the pressure can experience
a jump,

The laws of conservation of mass and momentum onthe boundary TI'y; give the relations

(o — ap*) vy = Apvo-, (@) — &%) v = a0y
0o-To- (¥x — V=) = Qg-po- — o0y 0v_0x — ¥ po. (8.7
P10y (B — 2y) = Xyp_ — 2poayZdv_dxr — o *p,

The subscript minus denotes quantities on the Q, side, and the subscript plus refers to the Q; side,
The quantity v, = dx,/dt is the rate of change of the thickness of the precipitate layer, and v; = v,. On
I'y3 «q must satisfy the condition

oy =2 o,¥ = const

(3.8)

4, The accuracy of the solution of the problem depends on the correct selection of the boundaries of
the media and satisfying conditions (3.5) and (3.7) on them.

If the domain Q; is known,the unknown functions within it are found in the form of the finite relations
(2.3).
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Let us consider domain Q,. Suppose the functions v?, vy1t, vji1, pf, a1, 4B, p B, p B are known at
time t% in Q,. Then the relation dx,/dt = v;x can be used to find x, " — the boundary T, at the next instant
th+!, The equation of continuity for the particles enables us to find ozin’“ in Q, and consequently also the
functions ag*!, peB*! and p0*!, In addition the boundary T',; can be determined from Egs. (3.7) and (3.8).

Using (2.2) and the equation of continuity gives the integral
Aoty + Gy, = 0 (4.1)

After eliminating the pressure from the momentum equations and using (4.1) we obtain the equation
for v,

dsy %0 Jv, .
a~a—l+bw+cm"+d%'—'e 4.2)

where the functions a, b, ¢, d, and e depend on t, X, vq, @4, 80/ 9%, 8%x,/5x%, On the curve Ty, oy =1 and
Eq. (4.2) contains a singularity (o — 1)~!, But from (3.5) we have vy/Ty; = 0. At other points in Q, a, <1,
Condition (3.7) enables us to find the value of vy on T3, and then Eq. (4.2) can be solved in Q, numerically,
We find vin'” from (4.1), v®*! from the corresponding formula, and from any momentum equation with con-
dition (3.5) we find the pressure p2+! Thus the unknown functions in Q, are found at time to+l,

Solving Egs. (2.4) and (3.7) in zone Q, we obtain the unknown functions in the whole domain Q. They
can be found at the next instant by repeating the procedure described.

The algorithm described was programmed in FORTRAN. The differential equations were integrated
pumerically by the finite difference method. The difference schemes used gave second-order approxima-
tions in the spatial variable and first-order in the time, The number of mesh points inthe X direction was
chosen equal to 100, The average time to calculate one variant of the problem on a BESM-6 computer did

not exceed 10 min,

5. Various cases of the precipitation of particles were calculated as functions of my, my, pg, Ag, T,
and other parameters, The results are presented graphically for the precipitation of 0.1 mm radius par-
ticles having an initial density «,° = 0.2, The particles were precipitated from water:

Mo = 043072 kg/mesec, Ao = 0.15,7° m¥/sec,
m, = 1000 kg/m®

Figure 2 shows the particle density as a function of height in domain Q at time t = 60 sec, Curves
1, 2, 3, 4, and 5 correspond to particles with densities m; 2, 5, 10, 15, and 20 times larger than the den-
sity of water m,. The dashed line shows the initial density at t = 0,

Figure 3 shows the precipitation from water of glass spheres with r = 0.1 mm and m; =2 my, Curves
1, 2, 3, and 4 describe the behavior of o at times t = 50, 200, 450, and 3600 sec.

Figure 4 shows the velocities of the particles (solid curves), the liquid (dash-dot), and the mixture
(dashed) for the preceding example, The vertical straight lines 1, 2, and 3 correspond to the thickness of
the precipitate layer at times t = 50, 200, and 450 sec, Att = 3600 sec all velocities are practically zero;
i.e. the precipitation process has been completed. It is clear from this graph that the particles and the
liquid have nearly the same speeds, but the fact that they are moving in opposite senses leads to additional
forces impeding precipitation. Therefore according to the model of [1] the total duration of the precipita-
tion process is substantially longer than in models which neglect the motion of the liquid [3].
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Curves 1, 2, and 3 of Fig, 5 show the shapes of the I'y,
boundary for particles having material densities m; = 2m,, 10m,,
and 20mgy, It is clear that the I'j, curves for higher density par-
ticles approach the asymptote more rapidly; i.e, the precipita-
tion process is completed more quickly,

6. Suppose a viscous incompressible liquid flows upward
through a layer of solid spherical particles poured onto a hori-
zontal mesh in a vertical cylindrical tube. The acceleration due
to gravity is directed downward along the axis of the tube X. At
a certain flow velocity of the liquid vy* the buoyant force on the
particles becomes larger than the sum of the forces holding the
layer of particles in a packed state (the weight of the particles,
the interactions between particles,etc.), The layer begins to
thicken, the distance between particles increases, and the parti-
cles become separated by layers of liquid. Since the passage of
the liquid increases the cross section of the layer, the velocity
of the liquid and the buoyant force decrease., A distribution of
particle densities and velocities is established in the layer such
that the buoyant force is balanced by the weight, The motion of
the particles in the layer resembles the boiling process and by
analogy such a layer is called a boiling layer.

A similar description of a boiling layer is given by Gol'dshtik
[5]. There he presents an elementary theory of the layer based
on empirical hypotheses and qualitatively describing the motion
in a uniform boiling layer. A uniform boiling layer is one in
which the flow of the liquid and the particles is distributed uni-
formly over the whole thickness of the layer. A uniform boiling
layer has a clearly defined upper houndary separating it from
the zone of "pure" liquid where the particle density is much lower
than in the layer.

A uniform boiling layer is not always realized. Let us con-
sider how the particle density «4° in the layer and the velocity of
the liquid vy* must be related for a boiling layer to be possible
and stable. We solve the system of equations (1.1) for the condi-
tions

[ Vo* (1 — %), ze={0,1)

v, x|l L)

[0, =0, ]

l(llf’, I = [/ L] (6.1)
vi(t, ) =0, rz={0,L], t=0

ot 0) =1e* (1 —«,®, vy (b, Y-+ 0

vy {t. L) =2 vy¥*, n, Iy—0 | ’

o (0, 1) = ap (0, 2) =

L= [0, T (6.2)

where |L — | is the initial thickness of the layer. By using (6.1)
and (6.2) we solve (1.1) for vy* as a function of o°:

¥ (o)) = /IT( ir-l — k %/ i a (L — a)(ing — my) g (6.3)

This equation is plotted in Fig. 6, The figure shows that the solution of problem (1.1), (6.1), and (6.2)

is not unique in the range o, =0 to «y° = ay* = 0,7, the value for close packing. In order to select the
stable solution test calculations of this problem were performed for Eq. (6.3). It was established that for
a given velocity vy* a stable uniform layer is ensured only for values of «¢® > 0.273, the value for which
Vo*(@4°) is maximum, The result agrees qualitatively with the results in [5] where it is estimated that a
stable boiling layer can exist for a;° > 0.35.

Calculations were performed using 0.275 < «4° < ¢* and varying the speed of the liquid according

to a definite law from zero to the value vy* previously found from (6.3). It turned out that a uniform stable
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boiling layer can exist if a dense precipitate cannot be formed in the bottom layer in the time required for
the velocity of the liquid to reach the value vy*. Otherwise the velocity vy* turns out be insufficient to bring
the layer into a uniform state. If v, is somewhat larger than vy* the upper part of the boiling layer is washed
out, and its uniformity is destroyed., For v, > vy* the particles float upward and a zone of pure liquid is
formed at the bottom of the tube,
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